
Page 1 of 12

Group9Stage1Report

MECH 452 - Mechatronics Engineering

Department of Mechanical and Materials Engineering

Faculty of Engineering and Applied Science, Queen’s University, Kingston

Group #24

Project Stage 1- Neutralization of Point Radiation Source with a Mobile Robot

Student Names: Zach Elman and Cristiano Iocabelli

Instructor Name: Prof. Surgenor

Date Report Submitted: November 14, 2021

Summary:

A LynxBot and code from the previous lab programs Group9Lab6WallFollow and

Group9Lab8Target, were used in this project stage. The project challenge required the LynxBot

to perform a wall follow during the first step of the challenge and then perform a sweep of the

area in order to locate one of the three lamps which would be turned on. The lamps were two,

three, or four metres away from the sweeping location. The goal of the challenge was to locate

the illuminated lamp, drive towards it and cover the lamp with the LynxBot blocker. Activities

involved included, a) modifying a wall following program to incorporate two sharps in order to

allow the LynxBot to follow the wall specific to this task, b) modifying a sweeping program to

allow the LynxBot to detect which one of the three lamps was illuminated, and c)

troubleshooting the LynxBot and analyzing data in-situ in order to program appropriate solutions

to issues with detecting the four-metre light source.

Design

The LynxBot robot used for the trial had several main components. These components

included an ardunio board, a six-volt battery, a twelve-volt battery, two motors for its sets

of wheels, front bumper buttons, two sharps, and a photoresistor. Fig. 1 shows the entire

LynxBot design used throughout the challenge. Fig. 2 is a close-up of one of the sharps that was

placed at the front of the LynxBot in order to detect when it was close to the final wall during the

wall following segment. It was also used as a second method of detection to stop the LynxBot

once it was close enough to one of the three lamps. The second sharp used can be seen in Fig. 3.

It was used for the wall following segment and was placed on an angle in order to detect turns

more in advance. The photoresistor used can also be seen in Fig. 2 and was placed at the front of

the LynxBot, stacked on 10 pieces of Lego. It was used for detecting the lamps during the

challenge. Fig.4 displays the testing and challenge setup for the project.

Page 2 of 12

Fig. 1- Front view of the LynxBot design used during the challenge

Fig. 2 – Close-up view of the front sharp and photoresistor used

 Fig. 3- Close up view of the angled sharp used for the wall follow

Page 3 of 12

Fig. 4 – Stage 1 challenge setup with LynxBot at sweeping position

Program:

A listing of the program Group24Lab1IntroSwitch used in the lab is given in Appendix A. The

flowchart corresponding to this program is given as Fig. 5 . The program starts with the green

LED flashing until the button is pressed which commences the wall following segment. During

the wall following segment, the LynxBot completes two turns and then drives along the final

straight-away until it reaches the sweeping area. Here, it completes a 180 degree sweep in order

to locate the position of illuminated lamp. If lamp is four metres away, the LynxBot would rotate

a fixed amount to improve its bearing to the lamp and would drive forward in order to complete

its position correction sequence at a closer distance so that it is more accurate. It would then keep

driving forward until the photoresistor detects a high enough brightness, or three seconds have

passed. The code is then the same between the main branch and this offset branch which is why

it connects back to the main segment in the flowchart. If the illuminated lamp was not detected to

be the four metre lamp, the position correction sequence is completed. The LynxBot then

advances forward until either the brightness level is high enough to indicate that the robot is

close enough to complete the second sweep, or after two seconds have passed. At this point the

LynxBot completes its sweep to improve its bearing and then it begins its bearing or position

correction sequence in case the sweep was slightly off. After this, the LynxBot continues to

advance forward until either the brightness is high enough to indicate that it is at the final

location, or once the sharp detects that the LynxBot is close to the box behind the lamp. Once

this is achieved, the LynxBot will pause for 2 seconds, turn 180 degrees counterclockwise, and

move backwards for 0.5 seconds to block the light. The program will end after this point.

Page 4 of 12

Fig. 5- Flowchart of the program used in stage 1 of the project

Page 5 of 12

Results:

i) Beginning with the wall following sequence, code from the Group9Lab6WallFollow program

was used and it worked well before the second turn without any adjustments. The first challenge

was to turn right, since the previous program only worked for turning left. To solve this problem,

a forward-facing sharp was added and used to detect when the LynxBot should begin to turn

right. At first, open loop control was used where the robot would turn right for an arbitrary delay

and then return to the wall following code. This was changed since the turning amount would

differ greatly based on the battery voltage. To close the loop, the final code had the robot turning

right until the forward-facing sharp did not read the wall anymore, where it would then return to

the wall following code.

The next issue faced was that the light sensing code from the previous lab was not working well

on the initial sweep. It was determined that the issue was because there was inconsistency

between the sweeps to the right and the left. The sweeps to the right (the initial sweep) would

often over rotate. To solve this issue an open-loop counterclockwise turn was added to

compensate for the over rotation.

The last and most difficult issue faced was for the 4 metre light. The photoresistor was not able

to detect the location of the 4-metre light since it was very close to the brightness level of the

ambient light. This was tested in-situ and it was even found that there was a location in between

the 3 metre and 4 metre light that produced slightly higher brightness readings than the actual

lamp. This was most likely due to the light from the window. To solve this issue, an extra open

loop clockwise turn was added to get closer to the correct bearing. This would only execute if the

max brightness level recorded was below a certain threshold throughout the sweep which would

indicate that the 4-metre light was on. The LynxBot would then drive forwards for a fixed

amount of time to get closer to the light to complete its position correction sequence at a distance

where it would be able to detect the light. After this position correction sequence, the LynxBot

would then drive forward for 3 seconds (instead of 2 seconds for the other lights) or until the

brightness reading reached a high enough level to complete its second sweep. This allowed it to

get closer to the light before it would do its second sweep where the light was easily detected.

This worked well, allowing for many successful runs, including two successful ones for the test.

ii) One of the teams had a very good strategy for the challenge which is currently being

considered for stage 2 of the project. The method used a continuous sweeping method with the

servomotor where the LynxBot would continuously correct its bearing as it was driving forward.

This is a great solution as it avoids open-loop control since the LynxBot is constantly correcting

itself according to the bearing relative to the light. The biggest advantage is that it eliminates the

risk of a sweep being slightly off since it can correct itself shortly after. This was a regular

problem that was experienced throughout the testing of the current program since the program

only had two sweeps and thus only two chances to improve its bearing. The photoresistor did

experience noisy readings and would sometimes send the LynxBot on a bearing quite off from

the lamp. If this happened for the 3 metre or 4 metre light, the error would be propagated

significantly as it moved forward. This would further affect the accuracy of the second sweep

since the LynxBot would be facing the light on a very large angle. Therefore, this constant

sweeping method is currently being investigated for stage 2 as it worked very well, achieving the

other team a perfect score and the fastest time. Additionally, there was another team that would

measure the angle of the lamp relative to the robot at the final step and adjust the amount that the

robot would rotate in order to block the lamp. This proved to be more successful and allows for a

Page 6 of 12

more precise method of blocking the light. This will be investigated for the stage 2 project as

well to avoid the use of an arbitrary fixed rotation amount currently used to block the light.

iii) The main lesson learned from this challenge was that open loop control should be avoided.

The inconsistency that comes with using open loop control adds time for calibration and only

works at an ideal voltage level whereas closed loop control should only need to be calibrated

once. Closed loop control greatly reduces the risk of having noisy hardware which can result in

errors that would be propagated significantly by only occasionally being fixed in an open loop

system. A more precise method of control will also be investigated for the light blocking

sequence of the trial since it will help to eliminate different turning inconsistencies experienced

due to changes in battery voltage. Finally, the team learned that functions should be used more in

order to make the program more organized and easier to troubleshoot since the program became

extremely long throughout this phase. It often made it challenging to find certain parts within the

code that needed to be changed since there were so many lines of code.

Page 7 of 12

Appendix A - Program Listing:

/**

Group9Stage1

Original by B. Surgenor, 23/10/2020

Modified by: Zach Elman and Cristiano

Iocabelli

(based on Group9Lab8Target)

Changes:

Added e-stop sequence during wall follow

which flashes all lights if bumper is

pressed

Added wall follow sequence

Added 4 metre lamp condition with

specific sequence involving additional

rotation and advance forward before

implementing the position correction

sequence.

Added sharp detection when LynxBot is

near lamp. (Lab 8 only relied on

photoresistor value)

************************/

// Pin Assignments

int RED = 4; //red LED Pin

int GRN = 5; //green LED Pin

int YLW = 6; //yellow LED Pin

//push button

int BUTTON_A = 7;

int BUTTON_B = 8;

int BUTTON_C = 9;

int MOTOR_L = 10; // left motor signal

int MOTOR_R = 11;

int servoPin = 12;

int LIGHT = A0; //photoresistor pin (can't

be lowercase a0)

int firstturn = 60;

int servoAngle = 0;

//sharp values

int SHARP1 = A1; // sharp input pin

int sensor1;

int SHARP2 = A2;

int sensor2;

float KP = 0.16;

// adjust stop speed and target distance as

appropriate

int WALL = 1300;

//global variables

float result; //A to D value from

photoresistor

float mvresult; //millivolt value for

photoresistor

float mvavg;

unsigned long time;

unsigned long start;

float maxangle;

float mvmax = 0;

int deltaf = 30;

int delta = 20;

int delta1= 20;

int deltat= 10;

int STOP_SPEED = 143;

int delta2 = 20;

float correctangle=0;

float middist=3100;

float mvtotal;

float mvtotal2;

int count;

int cond = 0;

int offset= 50;

int BUMPER = 13;

// Setup Routine

void setup()

{

// initialize led pins as outputs.

pinMode(GRN, OUTPUT);

pinMode(YLW, OUTPUT);

pinMode(RED, OUTPUT);

//initialize pins as inputs

pinMode(BUTTON_A, INPUT);

Page 8 of 12

pinMode(BUTTON_B, INPUT);

pinMode(LIGHT, INPUT);

pinMode(MOTOR_L, OUTPUT);

pinMode(MOTOR_R, OUTPUT);

pinMode(BUMPER, INPUT);

//initialize serial printout

Serial.begin(9600);

Serial.println(4000); // set desired max

vertical scale

Serial.println(2700);

//Program Initalization

Serial.println("Program loaded.");

Serial.println("Press button to start.");

runMotors(0,0);

delay(50);

do {

toggleLED(GRN);

result = analogRead(LIGHT); //read the

value of photoresistor

mvresult = map(result, 0, 1024, 0, 5000);

Serial.println(mvresult);

// Green LED flashing

}while(digitalRead(BUTTON_B)== HIGH);

Serial.println("Program running.");

delay(1000); // give user chance to get

ready before plotting starts after button

press

}

// Main Loop

void loop() {

delay(1000);

do{

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

digitalWrite(RED, HIGH);

digitalWrite(GRN, HIGH);

digitalWrite(YLW, HIGH);

delay(500);

digitalWrite(RED, LOW);

digitalWrite(GRN, LOW);

digitalWrite(YLW, LOW);

delay(1000);

}while(-1);

}

sensor1 =

map(analogRead(SHARP1),0,1023,0,5000);

sensor2 =

map(analogRead(SHARP2),0,1023,0,5000);

int error = WALL - sensor1;

int dummy = min(abs(error)*KP, 100);

int deltaV = deltaf*(100-dummy)/100;

if(error > 130){

KP=0.18;

turnOnLED(YLW);

runMotors(deltaV, deltaf);

}

else if(error < -90){ //too close to the wall

turnOnLED(RED);

KP =0.20;

runMotors(deltaf, deltaV);

}

else{ //desired distance

KP=0.16;

turnOnLED(GRN);

runMotors(deltaf+10,deltaf+10);

}

Serial.print(error);

Serial.print("\t");

Serial.print(dummy);

Serial.print("\t");

Serial.println(deltaV);

}while(sensor2<1300);

do{

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

digitalWrite(RED, HIGH);

digitalWrite(GRN, HIGH);

digitalWrite(YLW, HIGH);

delay(500);

digitalWrite(RED, LOW);

digitalWrite(GRN, LOW);

digitalWrite(YLW, LOW);

delay(1000);

Page 9 of 12

}while(-1);

}

sensor2 =

map(analogRead(SHARP2),0,1023,0,5000);

runMotors(20,-20);

delay(10);

}while(sensor2>1000);

do{

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

digitalWrite(RED, HIGH);

digitalWrite(GRN, HIGH);

digitalWrite(YLW, HIGH);

delay(500);

digitalWrite(RED, LOW);

digitalWrite(GRN, LOW);

digitalWrite(YLW, LOW);

delay(1000);

}while(-1);

}

sensor1 =

map(analogRead(SHARP1),0,1023,0,5000);

sensor2 =

map(analogRead(SHARP2),0,1023,0,5000);

int error = WALL - sensor1;

int dummy = min(abs(error)*KP, 100);

int deltaV = deltaf*(100-dummy)/100;

if(error > 130){

KP=0.18;

turnOnLED(YLW);

runMotors(deltaV, deltaf);

}

else if(error < -90){ //too close to the wall

turnOnLED(RED);

KP =0.20;

runMotors(deltaf, deltaV);

}

else{ //desired distance

KP=0.16;

turnOnLED(GRN);

runMotors(deltaf+10,deltaf+10);

}

Serial.print(error);

Serial.print("\t");

Serial.print(dummy);

Serial.print("\t");

Serial.println(deltaV);

}while(sensor1>1000);

runMotors(delta1,delta1);

delay(1700);

runMotors(0,0);

delay(2000);

for(int ii = 0; ii < (firstturn*2); ii += 1){

result = analogRead(LIGHT); //read the

value of photoresistor

mvresult = map(result, 0, 1024, 0, 5000);

//convert value to millivolts

if(mvresult>mvmax){

mvmax=mvresult;

correctangle=ii;

}

Serial.println(mvresult);

runMotors(-delta1,delta2);

delay(10);

}

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

turnOnLED(RED);

delay(500);

}while(-1);

}

do{

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

turnOnLED(RED);

delay(500);

}while(-1);

}

result = analogRead(LIGHT); //read the

value of photoresistor

mvresult = map(result, 0, 1024, 0, 5000);

Page 10 of 12

float mvresult2 = map(result, 0, 1024, 0,

5000);

float mvresult3 = map(result, 0, 1024, 0,

5000);

float mvresult4=map(result, 0, 1024, 0,

5000);

mvavg = (mvresult + mvresult2 +

mvresult3 + mvresult4)/4;

runMotors(delta1,-delta2);

delay(10);

Serial.println(mvavg);

// Serial.print(mvresult);

}while(abs(mvmax-mvavg)>offset);

Serial.println(mvmax);

if (mvmax < 2500){

cond = 1;

for(int ii = 0; ii < (15); ii += 1){

runMotors(delta,-delta);

delay(10);

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

turnOnLED(RED);

delay(500);

}while(-1);

}

}

for(int ii = 0; ii < (60); ii += 1){

runMotors(delta,delta);

delay(10);

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

turnOnLED(RED);

delay(500);

}while(-1);

}

}

}

do{

for(int i = 0; i < 12; i += 1){

result = analogRead(LIGHT); //read the

value of photoresistor

mvresult = map(result, 0, 1024, 0, 5000);

mvtotal = mvresult + mvtotal;

runMotors(0,0);

delay(10);

}

runMotors(deltat,-deltat);

delay(200);

runMotors(0,0);

delay(300);

for(int i = 0; i < 12; i += 1){

result = analogRead(LIGHT); //read the

value of photoresistor

mvresult = map(result, 0, 1024, 0, 5000);

mvtotal2 = mvresult + mvtotal2;

runMotors(0,0);

delay(10);

}

mvtotal = mvtotal/12;

mvtotal2 = mvtotal2/12;

}while(mvtotal2 > mvtotal - 5);

runMotors(-deltat,deltat);

delay(300);

if (correctangle<40){

for(int i = 0; i < 150; i += 1)

runMotors(delta1,delta2);

delay(10);

}

if(cond==1){

middist = middist + 200;

count = -100;

}

do{

result = analogRead(LIGHT);

runMotors(delta1,delta2);

delay(10);

count=count+1;

mvresult = map(result, 0, 1024, 0, 5000);

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

turnOnLED(RED);

delay(500);

}while(-1);

}

}while(mvresult<middist && count<200);

Page 11 of 12

runMotors(0,0);

delay(500);

for(int ii = 0; ii < (firstturn); ii += 1){

result = analogRead(LIGHT); //read the

value of photoresistor

mvresult = map(result, 0, 1024, 0, 5000);

//convert value to millivolts

runMotors(-delta1,delta2);

delay(10);

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

turnOnLED(RED);

delay(500);

}while(-1);

}

}

for(int ii = 0; ii < (firstturn*2); ii += 1){

result = analogRead(LIGHT); //read the

value of photoresistor

mvresult = map(result, 0, 1024, 0, 5000);

//convert value to millivolts

if(mvresult>mvmax){

mvmax=mvresult;

correctangle=ii;

}

runMotors(delta1,-delta2);

delay(10);

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

turnOnLED(RED);

delay(500);

}while(-1);

}

}

do{

result = analogRead(LIGHT); //read the

value of photoresistor

mvresult = map(result, 0, 1024, 0, 5000);

runMotors(-delta1,delta2);

}while(abs(mvmax-mvresult)>50);

do{

for(int i = 0; i < 12; i += 1){

result = analogRead(LIGHT); //read the

value of photoresistor

mvresult = map(result, 0, 1024, 0, 5000);

mvtotal = mvresult + mvtotal;

runMotors(0,0);

delay(10);

}

runMotors(-delta,deltat);

delay(200);

runMotors(0,0);

delay(300);

for(int i = 0; i < 12; i += 1){

result = analogRead(LIGHT); //read the

value of photoresistor

mvresult = map(result, 0, 1024, 0, 5000);

mvtotal2 = mvresult + mvtotal2;

runMotors(0,0);

delay(10);

}

mvtotal = mvtotal/12;

mvtotal2 = mvtotal2/12;

}while(mvtotal2 > mvtotal - 5);

//runMotors(deltat,-deltat);

//delay(100);

//for(int ii = 0; ii < (firstturn*2-

correctangle); ii++){

//

// result = analogRead(LIGHT); //read the

value of photoresistor

// mvresult = map(result, 0, 1024, 0, 5000);

// runMotors(-delta1,delta2);

//

// delay(20);

//}

do{

sensor2 =

map(analogRead(SHARP2),0,1023,0,5000);

result = analogRead(LIGHT);

runMotors(delta1,delta2);

mvresult = map(result, 0, 1024, 0, 5000);

}while(mvresult<4400 && sensor2<900);

for(int i = 0; i < 50; i += 1){

runMotors(0,0);

Page 12 of 12

delay(10);

if(digitalRead(BUMPER)== HIGH){

runMotors(0,0);

do{

turnOnLED(RED);

delay(500);

}while(-1);

}

}

for(int i = 0; i < 113; i += 1){

runMotors(delta1,-delta2);

delay(10);

}

for(int i = 0; i < 10; i += 1){

runMotors(0,0);

delay(10);

}

for(int i = 0; i < 40; i += 1){

runMotors(-delta1,-delta2);

delay(10);

}

runMotors(0,0);

turnOnLED(RED); // end of program

do{

toggleLED(RED);

}while(-1); // repeat forever

//}while(digitalRead(BUMPER) == HIGH);

runMotors(0,0);

turnOnLED(RED); // end of program

do{

toggleLED(RED);

}while(-1);

}

//********** FUNCTIONS (subroutines)

//Turn on a single LED, and all other off

void turnOnLED(int COLOUR){

digitalWrite(GRN, LOW);

digitalWrite(YLW, LOW);

digitalWrite(RED, LOW);

digitalWrite(COLOUR, HIGH);

}

//Toggle an LED on/off

void toggleLED(int colour){

digitalWrite(colour, HIGH);

delay(125);

digitalWrite(colour, LOW);

delay(125);

}

void servoPulse(int servoPin, int myAngle){

int pulseWidth = (myAngle * 9.5) + 530;

digitalWrite(servoPin, HIGH); //set servo

high

delayMicroseconds(pulseWidth);

//microsecond pause

digitalWrite(servoPin, LOW);

}

void distanceLED(float mvResult){

if(mvResult > 3700){

turnOnLED(RED);

}

else if(mvResult < 3700 && mvResult >

3300){

turnOnLED(GRN);

}

else if(mvResult < 3100){

turnOnLED(YLW);

}

}

void runMotors(int delta_L, int delta_R){

int pulse_L = (STOP_SPEED + delta_L)*10;

//determines length of pulse in microsec

int pulse_R = (STOP_SPEED + delta_R)*10;

for(int i=0; i<3; i++){

pulseOut(MOTOR_L, pulse_L); //send pulse

to left motors

pulseOut(MOTOR_R, pulse_R); //send

pulse to right motors

}

}

void pulseOut(int motor, int pulsewidth){

digitalWrite(motor, HIGH);

delayMicroseconds(pulsewidth); //send

pulse of desired pulsewidth

digitalWrite(motor, LOW);

}

